Line 7: | Line 7: | ||
DFT | DFT | ||
− | <math>X(k) = \ | + | <math>X(k) = \sum_{n=0}^{N-1}{x(n)e^{-j2pikn/N}} k = 0, 1, 2, ..., N-1</math> |
Inverse DFT (IDFT) | Inverse DFT (IDFT) | ||
− | <math>x[n] = | + | <math>x[n] = \frac{1/N}\sum_{k=0}^{N-1}{X(k)e^{j2pikn/N}} n = 0, 1, 2, ..., N-1</math> |
+ | [[ECE438_(BoutinFall2009)|Back to ECE438 course page]] |
Revision as of 16:36, 18 September 2009
DFT ( Discrete Fourier Transform )
Definition
DFT $ X(k) = \sum_{n=0}^{N-1}{x(n)e^{-j2pikn/N}} k = 0, 1, 2, ..., N-1 $
Inverse DFT (IDFT) $ x[n] = \frac{1/N}\sum_{k=0}^{N-1}{X(k)e^{j2pikn/N}} n = 0, 1, 2, ..., N-1 $ Back to ECE438 course page