Line 7: Line 7:
  
 
DFT  
 
DFT  
*<math>X(k) = \sum^N-1_n=0{x(n)exp(-j2pikn/N) dn } k = 0, 1, 2, ..., N-1</math>
+
<math>X(k) = \sum{x(n)exp(-j2pikn/N) dn }^N-1_n=0 k = 0, 1, 2, ..., N-1</math>
  
 
Inverse DFT (IDFT)  
 
Inverse DFT (IDFT)  
*<math>x[n] = (1/N)\sum^N-1_k=0{X(k)exp(j2pikn/N) dk } n = 0, 1, 2, ..., N-1</math>
+
<math>x[n] = (1/N)\sum^N-1_k=0{X(k)exp(j2pikn/N) dk } n = 0, 1, 2, ..., N-1</math>

Revision as of 16:22, 18 September 2009


DFT ( Discrete Fourier Transform )

Definition

DFT $ X(k) = \sum{x(n)exp(-j2pikn/N) dn }^N-1_n=0 k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT) $ x[n] = (1/N)\sum^N-1_k=0{X(k)exp(j2pikn/N) dk } n = 0, 1, 2, ..., N-1 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett