(New page: Category:ECE438Fall2009mboutin == DFT ( Discrete Fourier Transform ) == Definition * DFT <math>X(k) = \sum{x(n)*exp(-j2pikn/N) dn } k = 0, 1, 2, ..., N-1</math> * Inverse DFT (IDFT...)
 
Line 4: Line 4:
  
  
Definition
+
'''Definition'''
 +
DFT
 +
<math>X(k) = \sum^N-1_n=0{x(n)*exp(-j2pikn/N) dn } k = 0, 1, 2, ..., N-1</math>
  
* DFT <math>X(k) = \sum{x(n)*exp(-j2pikn/N) dn } k = 0, 1, 2, ..., N-1</math>
+
Inverse DFT (IDFT)  
* Inverse DFT (IDFT) <math>x[n] = (1/N)\sum{X(k)*exp(j2pikn/N) dk } n = 0, 1, 2, ..., N-1</math>
+
<math>x[n] = (1/N)\sum^N-1_k=0{X(k)*exp(j2pikn/N) dk } n = 0, 1, 2, ..., N-1</math>

Revision as of 16:20, 18 September 2009


DFT ( Discrete Fourier Transform )

Definition DFT $ X(k) = \sum^N-1_n=0{x(n)*exp(-j2pikn/N) dn } k = 0, 1, 2, ..., N-1 $

Inverse DFT (IDFT) $ x[n] = (1/N)\sum^N-1_k=0{X(k)*exp(j2pikn/N) dk } n = 0, 1, 2, ..., N-1 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett