Line 3: Line 3:
 
=HomeworkWalther_8=
 
=HomeworkWalther_8=
  
 +
Did anybody get the proof for Problem 8? If so, posting would be appreciated.
  
 
+
Unfortunately,  I did not copy my notes,  but here was my logic.  First,  prove that the triangles are similar.  Than calculate their areas.  Put in perpendicular lines in both to get the area.  Than prove that the little triangles to the right of each are similar.  You than get proportions that match up with the area equation we need and the ratio they gave us on r fits in. Than just algebraically add in the 1/2. Hope that helps.
Put your content here . . .
+
 
+
  
  
  
 
[[ MA460 Homework Discussion|Back to MA460 Homework Discussion]]
 
[[ MA460 Homework Discussion|Back to MA460 Homework Discussion]]

Latest revision as of 14:28, 3 September 2009


HomeworkWalther_8

Did anybody get the proof for Problem 8? If so, posting would be appreciated.

Unfortunately, I did not copy my notes, but here was my logic. First, prove that the triangles are similar. Than calculate their areas. Put in perpendicular lines in both to get the area. Than prove that the little triangles to the right of each are similar. You than get proportions that match up with the area equation we need and the ratio they gave us on r fits in. Than just algebraically add in the 1/2. Hope that helps.


Back to MA460 Homework Discussion

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn