Line 2: Line 2:
  
 
[http://www.math.purdue.edu/~bell/MA425/hwk2.txt HWK 2 problems]
 
[http://www.math.purdue.edu/~bell/MA425/hwk2.txt HWK 2 problems]
 
Here's a hint on I.8.3 --[[User:Bell|Bell]]
 
 
It is straightforward to show that
 
 
<math>(z,w)\mapsto z+w</math>
 
 
is a continuous mapping
 
 
<math>(\mathbb C\times \mathbb C)\to\mathbb C</math>
 
 
because
 
 
<math>|(z+w)-(z_0+w_0)|\le|z-z_0|+|w-w_0|</math>
 
 
and to make this last quantity less than epsilon, it suffices to take
 
 
<math>|z-z_0|<\epsilon/2</math>
 
 
and
 
 
<math>|w-w_0|<\epsilon/2.</math>
 
 
To handle complex multiplication, you will need to use the standard trick:
 
 
<math>zw-z_0w_0 = zw-zw_0+zw_0-z_0w_0=z(w-w_0)+w_0(z-z_0)</math>.
 

Revision as of 07:59, 3 September 2009

Homework 2

HWK 2 problems

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood