Line 5: Line 5:
 
Here's a hint on I.8.3 --[[User:Bell|Bell]]
 
Here's a hint on I.8.3 --[[User:Bell|Bell]]
  
It is straightforward to show that <math>(z,w)\mapsto z+w</math> is a continuous mapping from <math>\mathbb C\times \mathbb C</math> because
+
It is straightforward to show that
 +
 
 +
<math>(z,w)\mapsto z+w</math>
 +
 
 +
is a continuous mapping from <math>\mathbb C\times \mathbb C</math>  to <math>\mathbb C</math> because
  
 
<math>|(z+w)-(z_0+w_0)|\le|z-z_0|+|w-w_0|</math>
 
<math>|(z+w)-(z_0+w_0)|\le|z-z_0|+|w-w_0|</math>

Revision as of 07:28, 3 September 2009

Homework 2

HWK 2 problems

Here's a hint on I.8.3 --Bell

It is straightforward to show that

$ (z,w)\mapsto z+w $

is a continuous mapping from $ \mathbb C\times \mathbb C $ to $ \mathbb C $ because

$ |(z+w)-(z_0+w_0)|\le|z-z_0|+|w-w_0| $

and to make this last quantity less than $ \epsilon $, it suffices to take

$ |z-z_0|<\epsilon/2<\math> and <math>|w-w_0|<\epsilon/2 $.

To handle complex multiplication, you will need to use the standard trick:

$ zw-z_0w_0 = zw-zw_0+zw_0-z_0w_0=z(w-w_0)+w_0(z-z_0) $.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett