(Removing all content from page)
Line 1: Line 1:
 +
CTFT ( Continuous Time Fourier Transform )
  
 +
Equations**
 +
*<math>X(w) = \int{x(t)*exp(-jwt) dt }</math>
 +
*<math>x(t) = (1/2pi)\int{X(w)*exp(jwt) dw }</math>
 +
 +
Duality Property
 +
* <math>'''{x(t)-CTFT->X(f)}'''</math>
 +
* <math>'''{X(t)-CTFT->x(-f)}'''</math>
 +
 +
Example
 +
*<math>delta(t-t0) ->CTFT-> exp(-j2pi.f.t0)</math>
 +
*<math>exp(j.2pi.f0t) -> CTFT -> delta(f-f0)</math>
 +
Another Example:
 +
*<math>rect(t) -> CTFT -> sinc(f)</math>
 +
*<math>sinc(t) -> CTFT -> (rect(-f) = rect(f))</math>
 +
 +
Cosine and Sine Functions
 +
*<math>cos(t) = 0.5 . ( delta(f - f0) + delta(f + f0) )</math>
 +
*<math>sin(t) = 0.5 i .( delta(f + f0) - delta(f - f0))</math>
 +
 +
Rept and Comb Functions
 +
* <math>Rept(x(t)) = x(t) * sum(delta(t-kT))</math>
 +
*<math>Comb(x(t)) = x(t) . sum(delta(t-kT))</math>
 +
 +
 +
 +
----------------------------------------
 +
DTFT ( Discrete Time Fourier Transform )
 +
 +
* <math>X(w) = \sum{x(n)*exp(-jwn) dn }</math>
 +
* <math>x(t) = (1/2pi)\int{X(w)*exp(jwt) dw }</math>
 +
* Note that x[n] is always periodic with 2pi
 +
 +
I will add more later.

Revision as of 15:09, 1 September 2009

CTFT ( Continuous Time Fourier Transform )

Equations**

  • $ X(w) = \int{x(t)*exp(-jwt) dt } $
  • $ x(t) = (1/2pi)\int{X(w)*exp(jwt) dw } $

Duality Property

  • $ '''{x(t)-CTFT->X(f)}''' $
  • $ '''{X(t)-CTFT->x(-f)}''' $

Example

  • $ delta(t-t0) ->CTFT-> exp(-j2pi.f.t0) $
  • $ exp(j.2pi.f0t) -> CTFT -> delta(f-f0) $

Another Example:

  • $ rect(t) -> CTFT -> sinc(f) $
  • $ sinc(t) -> CTFT -> (rect(-f) = rect(f)) $

Cosine and Sine Functions

  • $ cos(t) = 0.5 . ( delta(f - f0) + delta(f + f0) ) $
  • $ sin(t) = 0.5 i .( delta(f + f0) - delta(f - f0)) $

Rept and Comb Functions

  • $ Rept(x(t)) = x(t) * sum(delta(t-kT)) $
  • $ Comb(x(t)) = x(t) . sum(delta(t-kT)) $



DTFT ( Discrete Time Fourier Transform )

  • $ X(w) = \sum{x(n)*exp(-jwn) dn } $
  • $ x(t) = (1/2pi)\int{X(w)*exp(jwt) dw } $
  • Note that x[n] is always periodic with 2pi

I will add more later.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn