Line 11: | Line 11: | ||
<math> \sin x = \mathrm{Im}\{e^{ix}\} ={e^{ix} - e^{-ix} \over 2i}. </math> | <math> \sin x = \mathrm{Im}\{e^{ix}\} ={e^{ix} - e^{-ix} \over 2i}. </math> | ||
− | <math> \cos( | + | <math> \cos(x) = {e^{-jx} + e^{jx} \over 2}</math> |
+ | |||
+ | <math> \sin(x) = {e^{-jx} - e^{jx} \over 2j} </math> |
Revision as of 19:39, 22 July 2009
Euler's identity
$ e^{j \pi} + 1 = 0, \,\! $
Euler's formula
$ e^{jx} = \cos x + i \sin x \,\! $
$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $
$ \sin x = \mathrm{Im}\{e^{ix}\} ={e^{ix} - e^{-ix} \over 2i}. $
$ \cos(x) = {e^{-jx} + e^{jx} \over 2} $
$ \sin(x) = {e^{-jx} - e^{jx} \over 2j} $