Line 1: Line 1:
 
=Periodicity=
 
=Periodicity=
  
The period of a periodic CT function of the form <math>e^{j(\omega_0t+\phi)}</math> or <math>cos(\omega_0t+\phi)</math> is easy to find. This is due to the fact that every different value for the fundamental frequency <math>\omega_0</math> corresponds to a unique function with period <math>T=\frac{2\pi}{\omega_0}</math>.
+
The period of a periodic CT signal of the form <math>e^{j(\omega_0t+\phi)}</math> or <math>cos(\omega_0t+\phi)</math> is easy to find. This is due to the fact that every different value for the fundamental frequency <math>\omega_0</math> corresponds to a unique signal with period <math>T=\frac{2\pi}{\omega_0}</math>.
 +
 
 +
Finding the period of a DT signal becomes more complicated. This is due to the fact that different values of <math>\omega_0</math> can in fact lead to identical equations. As an example I will show how to find the period of a DT complex exponential of the form <math>e^{j(\omega_0n+\phi)}</math> using the definition of period: a signal <math>x(n)</math> is periodic with period <math>N</math> if <math>x(n)=x(n+N)</math>.
 +
 
 +
We start by applying the definition
 +
 
 +
<math>e^{j(\omega_0(n+N)}</math>
  
 
--[[User:Asiembid|Adam Siembida (asiembid)]] 10:09, 22 July 2009 (UTC)
 
--[[User:Asiembid|Adam Siembida (asiembid)]] 10:09, 22 July 2009 (UTC)

Revision as of 05:17, 22 July 2009

Periodicity

The period of a periodic CT signal of the form $ e^{j(\omega_0t+\phi)} $ or $ cos(\omega_0t+\phi) $ is easy to find. This is due to the fact that every different value for the fundamental frequency $ \omega_0 $ corresponds to a unique signal with period $ T=\frac{2\pi}{\omega_0} $.

Finding the period of a DT signal becomes more complicated. This is due to the fact that different values of $ \omega_0 $ can in fact lead to identical equations. As an example I will show how to find the period of a DT complex exponential of the form $ e^{j(\omega_0n+\phi)} $ using the definition of period: a signal $ x(n) $ is periodic with period $ N $ if $ x(n)=x(n+N) $.

We start by applying the definition

$ e^{j(\omega_0(n+N)} $

--Adam Siembida (asiembid) 10:09, 22 July 2009 (UTC)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood