Line 3: | Line 3: | ||
The period of a periodic CT function of the form <math>e^{j(\omega_0t+\phi)}</math> or <math>cos(\omega_0t+\phi)</math> is easy to find. This is due to the fact that every different value for the fundamental frequency <math>\omega_0</math> corresponds to a unique function with period <math>T=\frac{2\pi}{\omega_0}</math>. | The period of a periodic CT function of the form <math>e^{j(\omega_0t+\phi)}</math> or <math>cos(\omega_0t+\phi)</math> is easy to find. This is due to the fact that every different value for the fundamental frequency <math>\omega_0</math> corresponds to a unique function with period <math>T=\frac{2\pi}{\omega_0}</math>. | ||
− | --[[User:Asiembid| | + | --[[User:Asiembid|Adam Siembida (asiembid)]] 10:09, 22 July 2009 (UTC) |
Revision as of 05:09, 22 July 2009
Periodicity
The period of a periodic CT function of the form $ e^{j(\omega_0t+\phi)} $ or $ cos(\omega_0t+\phi) $ is easy to find. This is due to the fact that every different value for the fundamental frequency $ \omega_0 $ corresponds to a unique function with period $ T=\frac{2\pi}{\omega_0} $.
--Adam Siembida (asiembid) 10:09, 22 July 2009 (UTC)