(New page: Suppose <math>f\in L^{1}(X,d\mu)</math>. Prove that for each <math>\varepsilon</math> there exists a <math>\delta >0</math> such that <math>\int_{E}|f|d\mu\leq\varepsilon</math> whenever <...)
 
Line 12: Line 12:
 
Case 2: <math>f\geq 0</math>
 
Case 2: <math>f\geq 0</math>
  
Set <math>f(x)\left\{\begin{array}{lr} f(x) & \text{if } f(x)\leq n\\ n & \text{otherwise}\end{array}\right.</math>, <math>n\in \mathbb{N}</math>
+
Set <math>f(x)\left\{\begin{array}{lr} f(x) & \text{if } f(x)\leq n\\ n & \text{otherwise}\end{array}\right.</math>
  
 
Then each <math>f_{n}</math> is bounded and converges to <math>f</math> pointwise.
 
Then each <math>f_{n}</math> is bounded and converges to <math>f</math> pointwise.
Line 22: Line 22:
 
Choose <math>\delta < \frac{\varepsilon}{2N}</math>. Now, if <math>\mu(E)<\delta</math>, then
 
Choose <math>\delta < \frac{\varepsilon}{2N}</math>. Now, if <math>\mu(E)<\delta</math>, then
  
<math>\int_{E}fd\mu = \int_{E}(f-f_{N})d\mu + \int_{E}f_{N}d\mu</math>
+
 
 +
<math> \int_{E}fd\mu = \int_{E}(f-f_{N})d\mu + \int_{E}f_{N}d\mu</math>
  
 
<math>< \int_{X}(f-f_{N})d\mu + N\mu(E) < \frac{\varepsilon}{2} + \frac{N\varepsilon}{2N} = \varepsilon</math>
 
<math>< \int_{X}(f-f_{N})d\mu + N\mu(E) < \frac{\varepsilon}{2} + \frac{N\varepsilon}{2N} = \varepsilon</math>

Revision as of 15:58, 5 July 2009

Suppose $ f\in L^{1}(X,d\mu) $. Prove that for each $ \varepsilon $ there exists a $ \delta >0 $ such that $ \int_{E}|f|d\mu\leq\varepsilon $ whenever $ \mu (E) <\delta $

Proof: Case 1: $ 0\leq f \leq M $ ($ f $ is bounded)

Given $ \varepsilon >0 $, choose $ \delta < \frac{\varepsilon}{M} $


$ \therefore \int_{E}fd\mu \leq M\int_{E}d\mu = M\mu(E) < M\delta < \varepsilon $


Case 2: $ f\geq 0 $

Set $ f(x)\left\{\begin{array}{lr} f(x) & \text{if } f(x)\leq n\\ n & \text{otherwise}\end{array}\right. $

Then each $ f_{n} $ is bounded and converges to $ f $ pointwise.

By the Monotone Convergence Theorem, there exists an $ N\in \mathbb{N} $ such that $ \int_{X}f_{N} > \int_{X}f - \varepsilon/2 $

$ \Rightarrow \int_{X}f-f_{N} < \varepsilon/2 $

Choose $ \delta < \frac{\varepsilon}{2N} $. Now, if $ \mu(E)<\delta $, then


$ \int_{E}fd\mu = \int_{E}(f-f_{N})d\mu + \int_{E}f_{N}d\mu $

$ < \int_{X}(f-f_{N})d\mu + N\mu(E) < \frac{\varepsilon}{2} + \frac{N\varepsilon}{2N} = \varepsilon $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010