Line 4: Line 4:
  
 
Examples: <math>y(t) = x(t) + t + 2</math> - Causal because the input values are depending on the present time
 
Examples: <math>y(t) = x(t) + t + 2</math> - Causal because the input values are depending on the present time
           <math>y(t) = \int_t^\infty x(t) dt</math>
+
           <math>y(t) = \int_t^\infty x(t) dt</math> - Not causal because the input values are depending on the future

Latest revision as of 18:03, 1 July 2009

Causal Systems

Definition: An LTI system that depends only on the present and past values of the input to the system. A system that is not causal depends on future values of the input to the system.

Examples: $ y(t) = x(t) + t + 2 $ - Causal because the input values are depending on the present time

         $ y(t) = \int_t^\infty x(t) dt $ - Not causal because the input values are depending on the future

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett