Line 3: | Line 3: | ||
'''Definition:''' A system is invertible if and only if unique inputs yield distinct outputs. In other words, when different inputs are put into the system, then no output should be the same, they should all be unique. | '''Definition:''' A system is invertible if and only if unique inputs yield distinct outputs. In other words, when different inputs are put into the system, then no output should be the same, they should all be unique. | ||
− | '''Corollary:''' If a system is invertible, then the system will have an inverse system <math>(S^-1)</math>. | + | '''Corollary:''' If a system is invertible, then the system will have an inverse system <math>(S^(-1))</math>. |
[https://kiwi.ecn.purdue.edu/rhea/index.php/LTI_System_Properties Return to LTI System Properties] | [https://kiwi.ecn.purdue.edu/rhea/index.php/LTI_System_Properties Return to LTI System Properties] |
Revision as of 05:27, 1 July 2009
Invertibility
Definition: A system is invertible if and only if unique inputs yield distinct outputs. In other words, when different inputs are put into the system, then no output should be the same, they should all be unique.
Corollary: If a system is invertible, then the system will have an inverse system $ (S^(-1)) $.