(New page: % 5x/6 = 440 x = 440*6/5; % solve for x E = 5*x /8; % Middle E G = 3*x /4; % middle G C = x; % middle C GL = 3*x/8; % Lower G EL = 5*x/16; % LOwer E AL = 5*x/12; % lower A ...)
 
 
Line 1: Line 1:
 
% 5x/6 = 440
 
% 5x/6 = 440
 +
 
x = 440*6/5; % solve for x
 
x = 440*6/5; % solve for x
  
 
E = 5*x /8;  % Middle E
 
E = 5*x /8;  % Middle E
 +
 
G = 3*x /4;  % middle G
 
G = 3*x /4;  % middle G
 +
 
C = x;        % middle C
 
C = x;        % middle C
 +
 
GL = 3*x/8;  % Lower G
 
GL = 3*x/8;  % Lower G
 +
 
EL = 5*x/16;  % LOwer E
 
EL = 5*x/16;  % LOwer E
 +
 
AL = 5*x/12;  % lower A
 
AL = 5*x/12;  % lower A
 +
 
BL = 15*x/36; % lower B
 
BL = 15*x/36; % lower B
ALS = 233.08; % lower A#
 
  
 +
ALS = 233.08; % lower A#
  
 
del = 0.0001; % 12 notes , 2500 for each
 
del = 0.0001; % 12 notes , 2500 for each
 +
 
t = 0:del:3.5; % total length 35001
 
t = 0:del:3.5; % total length 35001
 
   
 
   
 
% time for Note E
 
% time for Note E
 +
 
t1 = [ones(1,7500), zeros(1,5000),ones(1,2500),zeros(1,20001)];
 
t1 = [ones(1,7500), zeros(1,5000),ones(1,2500),zeros(1,20001)];
 +
 
% time for Note G
 
% time for Note G
 +
 
t2 = [zeros(1,7500), ones(1,2500),zeros(1,5000),ones(1,2500),zeros(1,17501)];
 
t2 = [zeros(1,7500), ones(1,2500),zeros(1,5000),ones(1,2500),zeros(1,17501)];
 +
 
% time for Note C
 
% time for Note C
 +
 
t3 = [zeros(1,10000),ones(1,2500),zeros(1,5000),ones(1,2500),zeros(1,15001)];
 
t3 = [zeros(1,10000),ones(1,2500),zeros(1,5000),ones(1,2500),zeros(1,15001)];
 +
 
% time for Note GL
 
% time for Note GL
 +
 
t4 = [zeros(1,20000),ones(1,2500),zeros(1,12501)];
 
t4 = [zeros(1,20000),ones(1,2500),zeros(1,12501)];
 +
 
% time for Note EL
 
% time for Note EL
 +
 
t5 = [zeros(1,22500),ones(1,2500),zeros(1,10001)];
 
t5 = [zeros(1,22500),ones(1,2500),zeros(1,10001)];
 +
 
% time for Note AL
 
% time for Note AL
 +
 
t6 = [zeros(1,25000),ones(1,2500),zeros(1,5000),ones(1,2501)];
 
t6 = [zeros(1,25000),ones(1,2500),zeros(1,5000),ones(1,2501)];
 +
 
% time for Note BL
 
% time for Note BL
 +
 
t7 = [zeros(1,27500),ones(1,2500),zeros(1,5001)];
 
t7 = [zeros(1,27500),ones(1,2500),zeros(1,5001)];
 +
 
% time for Note ALS
 
% time for Note ALS
 +
 
t8 = [zeros(1,30000),ones(1,2500),zeros(1,2501)];
 
t8 = [zeros(1,30000),ones(1,2500),zeros(1,2501)];
  
 
%play the song
 
%play the song
y = sin(2*pi*E*t).*t1 +...
+
 
 +
y = sin(2*pi*E*t).*t1 +...
 
     sin(2*pi*G*t).*t2 +...
 
     sin(2*pi*G*t).*t2 +...
 
     sin(2*pi*C*t).*t3 +...
 
     sin(2*pi*C*t).*t3 +...
Line 42: Line 66:
 
     sin(2*pi*ALS*t).*t8;
 
     sin(2*pi*ALS*t).*t8;
  
sound(y,1/del);
+
sound(y,1/del);

Latest revision as of 01:40, 25 June 2009

% 5x/6 = 440

x = 440*6/5; % solve for x

E = 5*x /8;  % Middle E

G = 3*x /4;  % middle G

C = x;  % middle C

GL = 3*x/8;  % Lower G

EL = 5*x/16;  % LOwer E

AL = 5*x/12;  % lower A

BL = 15*x/36; % lower B

ALS = 233.08; % lower A#

del = 0.0001; % 12 notes , 2500 for each

t = 0:del:3.5; % total length 35001

% time for Note E

t1 = [ones(1,7500), zeros(1,5000),ones(1,2500),zeros(1,20001)];

% time for Note G

t2 = [zeros(1,7500), ones(1,2500),zeros(1,5000),ones(1,2500),zeros(1,17501)];

% time for Note C

t3 = [zeros(1,10000),ones(1,2500),zeros(1,5000),ones(1,2500),zeros(1,15001)];

% time for Note GL

t4 = [zeros(1,20000),ones(1,2500),zeros(1,12501)];

% time for Note EL

t5 = [zeros(1,22500),ones(1,2500),zeros(1,10001)];

% time for Note AL

t6 = [zeros(1,25000),ones(1,2500),zeros(1,5000),ones(1,2501)];

% time for Note BL

t7 = [zeros(1,27500),ones(1,2500),zeros(1,5001)];

% time for Note ALS

t8 = [zeros(1,30000),ones(1,2500),zeros(1,2501)];

%play the song

y = sin(2*pi*E*t).*t1 +...

    sin(2*pi*G*t).*t2 +...
    sin(2*pi*C*t).*t3 +...
    sin(2*pi*GL*t).*t4 +...
    sin(2*pi*EL*t).*t5 +...
    sin(2*pi*AL*t).*t6 +...
    sin(2*pi*BL*t).*t7 +...
    sin(2*pi*ALS*t).*t8;

sound(y,1/del);

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics