Line 20: | Line 20: | ||
<math>\therefore</math> If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' <math>\square</math> | <math>\therefore</math> If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' <math>\square</math> | ||
+ | |||
+ | ---- | ||
-Adam Siembida | -Adam Siembida |
Revision as of 09:02, 17 June 2009
Proof
If $ E_\infty $ is finite, then $ P_\infty $ is always zero
$ P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt $
$ P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt) $
Because $ E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt $, it follows that by substitution
$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty $
$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}E_\infty) $
$ P_\infty=\lim_{T\to\infty}\frac{E_\infty}{2T} $
This limit will always evaluate to zero as long as $ E_\infty $ is finite.
$ \therefore $ If $ E_\infty $ is finite, then $ P_\infty $ is always zero $ \square $
-Adam Siembida