Line 1: Line 1:
== If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is ''zero'' ==
+
== If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' ==
  
 
----
 
----
Line 7: Line 7:
 
<math>P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt)</math>
 
<math>P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt)</math>
  
Because <math>E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt</math>, because of substitution it follows that
+
Because <math>E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt</math>, it follows that by substitution
  
 
<math>P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty</math>
 
<math>P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty</math>
Line 17: Line 17:
 
This limit will always evaluate to zero as long as <math>E_\infty</math> is finite.
 
This limit will always evaluate to zero as long as <math>E_\infty</math> is finite.
  
If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is ''zero''
+
<math>\therefore</math> If <math>E_\infty</math> is ''finite'', then <math>P_\infty</math> is always ''zero'' <math>\square</math>
 +
 
 +
-Adam Siembida

Revision as of 09:01, 17 June 2009

If $ E_\infty $ is finite, then $ P_\infty $ is always zero


$ P_\infty\equiv\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt $

$ P_\infty\equiv(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt) $

Because $ E_\infty\equiv\lim_{T\to\infty}\int_{-T}^T|x(t)|^2dt $, it follows that by substitution

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*E_\infty $

$ P_\infty=(\lim_{T\to\infty}\frac{1}{2T})*(\lim_{T\to\infty}E_\infty) $

$ P_\infty=\lim_{T\to\infty}\frac{E_\infty}{2T} $

This limit will always evaluate to zero as long as $ E_\infty $ is finite.

$ \therefore $ If $ E_\infty $ is finite, then $ P_\infty $ is always zero $ \square $

-Adam Siembida

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood