(New page: E<math>\infty</math> = <math>\int_{-<math>\infty</math>}^{<math>\infty</math>}</math>(<math>\sqrt{t}</math>)^2 dt E<math>\infty</math> = <math>\int</math> t dt E<math>\infty</math> = ...) |
|||
Line 1: | Line 1: | ||
− | + | <math>x(t)=\sqrt{t}</math> | |
+ | ---- | ||
+ | <math>E\infty= \int_{-\infty}^{\infty}|x(t)|^2dt</math> | ||
+ | E<math>\infty</math> = <math>\int_{-\infty}^{\infty} tdt</math> | ||
− | |||
+ | E<math>\infty</math> = <math>\frac{1}{2} t^2</math> evaluated from -<math>\infty</math> to +<math>\infty</math> = <math>\infty</math> | ||
− | |||
+ | P<math>\infty</math> = lim T<math>\to</math><math>\infty</math> <math>\frac{1}{2T}</math> <math>\int_{-T}^{T}\ tdt</math> | ||
− | + | <math>\frac{1}{2T} (.5t^2)|_{-T}^{T} = \frac{T}{4}</math> | |
+ | |||
+ | lim T<math>\to</math><math>\infty</math> = <math>\infty</math> = P<math>\infty</math> |
Revision as of 06:48, 17 June 2009
$ x(t)=\sqrt{t} $
$ E\infty= \int_{-\infty}^{\infty}|x(t)|^2dt $
E$ \infty $ = $ \int_{-\infty}^{\infty} tdt $
E$ \infty $ = $ \frac{1}{2} t^2 $ evaluated from -$ \infty $ to +$ \infty $ = $ \infty $
P$ \infty $ = lim T$ \to $$ \infty $ $ \frac{1}{2T} $ $ \int_{-T}^{T}\ tdt $
$ \frac{1}{2T} (.5t^2)|_{-T}^{T} = \frac{T}{4} $
lim T$ \to $$ \infty $ = $ \infty $ = P$ \infty $