(Removing all content from page)
Line 1: Line 1:
 +
We will start this from the beginning with the series:
  
 +
<math>1+r+r^2+r^3+...+r^N=\frac{1}{1-r}-\frac{r^{N+1}}{1-r}</math>
 +
 +
From here we substitute <math>r=-x^2</math> to get
 +
 +
<math>1-x^2+x^4-x^6+...+(-1)^Nx^{2N}=\frac{1}{1+x^2}-\frac{(-1)^{N+1}x^{2(N+1)}}{1+x^2}</math>

Revision as of 14:55, 26 October 2008

We will start this from the beginning with the series:

$ 1+r+r^2+r^3+...+r^N=\frac{1}{1-r}-\frac{r^{N+1}}{1-r} $

From here we substitute $ r=-x^2 $ to get

$ 1-x^2+x^4-x^6+...+(-1)^Nx^{2N}=\frac{1}{1+x^2}-\frac{(-1)^{N+1}x^{2(N+1)}}{1+x^2} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010