Line 1: Line 1:
 
a)<math>|h(x)| \leq (\int |f(x-y)|^p dy)^{1/p}(\int |g(y)|^q dy)^{1/q} = (\int |f(z)|^p dz)^{1/p}(\int |g(y)|^q dy)^{1/q} \leq ||f||_{p}||g||_{q}</math>
 
a)<math>|h(x)| \leq (\int |f(x-y)|^p dy)^{1/p}(\int |g(y)|^q dy)^{1/q} = (\int |f(z)|^p dz)^{1/p}(\int |g(y)|^q dy)^{1/q} \leq ||f||_{p}||g||_{q}</math>
  
b)Define <math>f_{t}(x)=f(x-t)\frac{}{}</math>, <math>h_{t}(x)=h(x-t)\frac{}{}</math>
+
b)Define <math>f_{t}(x)=f(x+t)\frac{}{}</math>, <math>h_{t}(x)=h(x+t)\frac{}{}</math>.
 +
 
 +
We have
 +
 
 +
<math>|h_{t}(x) - h(x)| =  |\int[f_t(x-y)-f(x-y)]g(y)dy |</math>

Revision as of 14:18, 22 July 2008

a)$ |h(x)| \leq (\int |f(x-y)|^p dy)^{1/p}(\int |g(y)|^q dy)^{1/q} = (\int |f(z)|^p dz)^{1/p}(\int |g(y)|^q dy)^{1/q} \leq ||f||_{p}||g||_{q} $

b)Define $ f_{t}(x)=f(x+t)\frac{}{} $, $ h_{t}(x)=h(x+t)\frac{}{} $.

We have

$ |h_{t}(x) - h(x)| = |\int[f_t(x-y)-f(x-y)]g(y)dy | $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal