Difference between revisions of "8.3 OldKiwi" - Rhea
User
Log in
Actions
View source
History
Recent Changes
Slectures
Squad
Practice
Formulas
Donations
Disclaimer
Home
Print
Revision as of 09:47, 16 July 2008
(
view source
)
Pweigel
(
Talk
)
← Older edit
Latest revision as of 09:53, 16 July 2008
(
view source
)
Pweigel
(
Talk
)
(Removing all content from page)
Line 1:
Line 1:
−
'''Given:''' <math>f \in L^p, p \geq 1, \int_0^1 f(y)sin(xy) dy = 0</math>
−
'''Show:''' f=0 a.e.
−
−
'''Proof:''' Assume wlog that f(0)=0, and extend to the entire line: <math>f(x) = -f(-x), x\in [-1,0), f(x)=0, |x|>1</math>.
−
−
We recall some facts about Fourier transfroms:
−
−
We proved on a HW that <math>f, g \in L^1 \Rightarrow \widehat{f*g} = \hat{f}\hat{g}</math>.
−
−
This implies that <math>\hat{f} = 0 \Rightarrow f=0</math> a.e.
−
−
Let <math>g(x) = \sin(x)\chi_{[-1,1]}</math>. We observe that <math>f*g = 0</math>:
−
−
<math>(f*g)(x) = \int_{-1}^1 f(t)\sin(x-t)dt = \int_{-1}^1 f(t)[\sin(x)\cos(t) - \cos(x)\sin(t)] = 0 \ \forall x</math>,
−
−
since <math>\int_{-1}^1 f(t)\cos(t) = 0</math> since <math>f(t)\cos(t)</math> is odd, and
−
−
<math>\int_{-1}^1 f(t)\sin(t) dt = 2\int_{0}^1 f(t)\sin(t) dt = 0</math> by assumption.
−
−
This implies that <math>\hat{f}\hat{g} = 0 \Rightarrow \hat{f} = 0 \Rightarrow f=0</math> a.e.
Latest revision as of 09:53, 16 July 2008
Shortcuts
Help
Main Wiki Page
Random Page
Special Pages
Log in
Search
Alumni Liaison
Followed her dream after having raised her family.
Read more »
Ruth Enoch, PhD Mathematics
Currently Active Pages
x
+
x
Chat
x