Line 1: | Line 1: | ||
− | Since all the <math>f_{n}</math> are AC, there exists <math>f_{n}^{'}</math> such that <math>f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t) | + | Since all the <math>f_{n}</math> are AC, there exists <math>f_{n}^{'}</math> such that <math>f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t)dtS</math> |
− | + | ||
− | + |
Revision as of 09:16, 10 July 2008
Since all the $ f_{n} $ are AC, there exists $ f_{n}^{'} $ such that $ f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t)dtS $