(New page: Recall if <math>f\in L^1_{loc}, </math> the result for #3 a follows from Lebesgue differentiation theorem. Next if <math>f\notin L^1_{loc}</math> consider the following: WLOG <math>f\g...)
 
Line 2: Line 2:
  
 
Next if <math>f\notin L^1_{loc}</math> consider the following:
 
Next if <math>f\notin L^1_{loc}</math> consider the following:
WLOG <math>f\geq 0 </math> by replacing <math>f </math> with <math>|f|.</math>
+
WLOG <math>f\geq 0 </math> by replacing <math> f </math> with <math> |f|.</math>
 +
 
 
Let <math>x\in \mathbb{R}^n</math>.   
 
Let <math>x\in \mathbb{R}^n</math>.   
  
Case 1, <math>\exists K\subset \mathbb{R}^n, K </math> compact, and<math>\int_kf=\infty</math>
+
'''Case 1''', <math>\exists K\subset \mathbb{R}^n, K </math> compact, and<math>\int_kf=\infty</math>
 +
Choose a cube <math>Q\supseteq K</math> with <math>|Q|<\infty </math> which is possible since <math>K</math> compact implies <math>K </math> bounded.

Revision as of 13:52, 9 July 2008

Recall if $ f\in L^1_{loc}, $ the result for #3 a follows from Lebesgue differentiation theorem.

Next if $ f\notin L^1_{loc} $ consider the following: WLOG $ f\geq 0 $ by replacing $ f $ with $ |f|. $

Let $ x\in \mathbb{R}^n $.

Case 1, $ \exists K\subset \mathbb{R}^n, K $ compact, and$ \int_kf=\infty $. Choose a cube $ Q\supseteq K $ with $ |Q|<\infty $ which is possible since $ K $ compact implies $ K $ bounded.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood