Line 1: Line 1:
1
+
#
  
 
<math>\sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\limits_n\int_{(0,1)}|f_n-f|+\sup\limits_n\int_{\{|f_n|>M\}}|f|</math>
 
<math>\sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\limits_n\int_{(0,1)}|f_n-f|+\sup\limits_n\int_{\{|f_n|>M\}}|f|</math>
Line 5: Line 5:
 
<math>Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\limits_n\int_{(0,1)}|f_n-f|=0</math>
 
<math>Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\limits_n\int_{(0,1)}|f_n-f|=0</math>
  
To show <math>\sup\limits_n\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty),</math>it suffices to show that <math>\sup\limits_n\int_{\{|f_n|>M\}}|f|\to0(M\to\infty)</math>
+
Therefore, to show <math>\sup\limits_n\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty),</math>it suffices to show that <math>\sup\limits_n\int_{\{|f_n|>M\}}|f|\to0(M\to\infty)</math>
 +
 
 +
Actually,
 +
 
 +
<math>\int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M & |f|<M-\delta\}}|f|+\int_{\{|f|>M-\delta\}}|f|</math>

Revision as of 09:06, 2 July 2008

$ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\limits_n\int_{(0,1)}|f_n-f|+\sup\limits_n\int_{\{|f_n|>M\}}|f| $

$ Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\limits_n\int_{(0,1)}|f_n-f|=0 $

Therefore, to show $ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty), $it suffices to show that $ \sup\limits_n\int_{\{|f_n|>M\}}|f|\to0(M\to\infty) $

Actually,

$ \int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M & |f|<M-\delta\}}|f|+\int_{\{|f|>M-\delta\}}|f| $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang