Line 5: Line 5:
 
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math>
 
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math>
  
<math> \rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt </math>
+
<math> \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt </math>

Revision as of 11:57, 1 July 2008

I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable.

Its given that $ x(t) \le B $

$ y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt $

$ \Rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva