Line 5: | Line 5: | ||
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math> | <math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math> | ||
− | <math> \rightarrow | + | <math> \rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt </math> |
Revision as of 11:57, 1 July 2008
I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable.
Its given that $ x(t) \le B $
$ y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt $
$ \rightarrow ~y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt $