Line 4: Line 4:
  
 
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math>
 
<math> y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt </math>
 +
 +
<math> y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt </math>

Revision as of 11:55, 1 July 2008

I thought that the solution posted in the Bonus 3 for problem 4 is slightly wrong in explaining why System II is Stable.

Its given that $ x(t) \le B $

$ y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t)\, dt $

$ y(t) \le \int_{-\infty}^{\infty} Bh(t)\, dt $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010