m
Line 6: Line 6:
  
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right)   
 
Therefore, <math> m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right)   
                 and n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>
+
                 and   n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right)</math>

Revision as of 11:15, 1 July 2008

7b OldKiwi.jpg

Let $ g(t) = \left ( \frac{dz}{dt} \right ) $

7b1 OldKiwi.jpg

Therefore, $ m_k = \left ( \frac {1}{k\pi} \sin ( \frac {k\pi}{2} ) \right) and n_k = \left( \frac {-1}{k\pi} \sin ( \frac {k\pi}{2} ) e^\frac{-j2k\pi2}{4} \right) $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn