Line 1: Line 1:
 
Exam 1, Problem 6 - Summer 2008
 
Exam 1, Problem 6 - Summer 2008
  
(Formatting to follow after dinner...)
+
a) By Inspection the linear constant-coefficient differential equation that describes the LTI system is:
  
a) By Inspection th linear constant-coefficient differential equation that describes the LTI system is:
 
  
y(t)=1/7x(t)-(1/7)(dy(t)/dt)
+
<math>y(t)= \frac{1}{7}x(t)- \frac{1}{7}\frac{dy(t)}{dt}</math>
  
  
 +
b) Show that the impulse response to this LTI system is given by <math>h(t)=e^{-7t}u(t)</math>
  
b) Show that the impulse response to this LTI system is given by h(t)=e^(-7t)u(t)
+
This means that <math>x(t) = \delta{(t)} </math> and <math> y(t) = e^{-7t}u(t)</math>
  
This means that x(t) = delta(t) and y(t) = e^(-7t)u(t)
 
  
e^(-7t)u(t) = (1/7)delta(t) - (1/7)d(e^(-7t)u(t)/dt
+
<math> e^{-7t}u(t) = \frac{1}{7}\delta{(t) } - \frac{1}{7}\frac{d(e^{-7t}u(t))}{dt} </math>
  
Differentiating (1/7)d(e^(-7t)u(t)/dt requires use of the chain rule.
+
 
 +
Differentiating <math>\frac{1}{7}\frac{d(e^{-7t}u(t))}{dt} </math> requires use of the chain rule.
  
 
This portion of the equation becomes:  
 
This portion of the equation becomes:  
  
(1/7)(-7)(e^(-7t))u(t) - (1/7)delta(t)(e^(-7t))
 
  
-(1/7)delta(t)(e^(-7t)) is -(1/7)delta(t)(e^(-7t)) evaluated at t=0 or -(1/7)delta(t)*1
+
<math>\frac{1}{7}(-7)e^{-7t}u(t) - \frac{1}{7}\delta{(t) }e^{-7t} </math>
 +
 
 +
 
 +
<math> \frac{-1}{7}\delta{(t) }e^{-7t} </math> is <math> \frac{-1}{7}\delta{(t) }e^{-7t} </math> evaluated at t=0 or <math> \frac{-1}{7}\delta{(t) }(1) </math>
 +
 
  
 
Plugging that back in yields:
 
Plugging that back in yields:
  
e^(-7t)u(t) = (1/7)delta(t) - (1/7)(-7)(e^(-7t))u(t) - (1/7)delta(t)
+
 
 +
<math> e^{-7t}u(t) = \frac{1}{7}\delta{(t) } - \frac{-7}{7}e^{-7t}u(t) - \frac{1}{7}\delta{(t) } </math>
 +
 
  
 
This equation simplifies to:
 
This equation simplifies to:
Line 33: Line 38:
  
  
c) Find H(s) at s=jw for the LTI system with impuls response h(t)=e^(-7t)u(t)
+
c) Find H(s) at s=jw for the LTI system with impuls response <math>h(t)=e^{-7t}u(t)</math>
 +
 
  
 
H(s) = Integral(-infinity to infinity)h(t)*e^(-st)dt
 
H(s) = Integral(-infinity to infinity)h(t)*e^(-st)dt
 +
  
 
H(s) = Integral(-infinity to infinity)e^(-7t)u(t)*e^(-st)dt
 
H(s) = Integral(-infinity to infinity)e^(-7t)u(t)*e^(-st)dt
 +
  
 
Limits change to 0 to infinity and u(t) drops out.
 
Limits change to 0 to infinity and u(t) drops out.
 +
  
 
H(s) = Integral(0 to infinity)e^(-7t)*e^(-st)dt
 
H(s) = Integral(0 to infinity)e^(-7t)*e^(-st)dt
 +
  
 
H(s) = Integral(0 to infinity)e^(-7t-st)dt
 
H(s) = Integral(0 to infinity)e^(-7t-st)dt
 +
  
 
H(s) = e^(-7t-st)/(-7-s) evaluated from 0 to inifinity
 
H(s) = e^(-7t-st)/(-7-s) evaluated from 0 to inifinity
 +
  
 
H(s) = e^(-7*infinity-s*infinity)/(-7-s) - e^(0)/(-7-s)
 
H(s) = e^(-7*infinity-s*infinity)/(-7-s) - e^(0)/(-7-s)
 +
  
 
H(s) = e^(-7*infinity-s*infinity)/(-7-s) goes to 0
 
H(s) = e^(-7*infinity-s*infinity)/(-7-s) goes to 0
 +
  
 
H(s) = 1/(7+s)
 
H(s) = 1/(7+s)
 +
  
 
H(jw) = 1/(7+jw)
 
H(jw) = 1/(7+jw)
 +
  
  

Revision as of 20:33, 30 June 2008

Exam 1, Problem 6 - Summer 2008

a) By Inspection the linear constant-coefficient differential equation that describes the LTI system is:


$ y(t)= \frac{1}{7}x(t)- \frac{1}{7}\frac{dy(t)}{dt} $


b) Show that the impulse response to this LTI system is given by $ h(t)=e^{-7t}u(t) $

This means that $ x(t) = \delta{(t)} $ and $ y(t) = e^{-7t}u(t) $


$ e^{-7t}u(t) = \frac{1}{7}\delta{(t) } - \frac{1}{7}\frac{d(e^{-7t}u(t))}{dt} $


Differentiating $ \frac{1}{7}\frac{d(e^{-7t}u(t))}{dt} $ requires use of the chain rule.

This portion of the equation becomes:


$ \frac{1}{7}(-7)e^{-7t}u(t) - \frac{1}{7}\delta{(t) }e^{-7t} $


$ \frac{-1}{7}\delta{(t) }e^{-7t} $ is $ \frac{-1}{7}\delta{(t) }e^{-7t} $ evaluated at t=0 or $ \frac{-1}{7}\delta{(t) }(1) $


Plugging that back in yields:


$ e^{-7t}u(t) = \frac{1}{7}\delta{(t) } - \frac{-7}{7}e^{-7t}u(t) - \frac{1}{7}\delta{(t) } $


This equation simplifies to:

0=0 indicating that it is correct.


c) Find H(s) at s=jw for the LTI system with impuls response $ h(t)=e^{-7t}u(t) $


H(s) = Integral(-infinity to infinity)h(t)*e^(-st)dt


H(s) = Integral(-infinity to infinity)e^(-7t)u(t)*e^(-st)dt


Limits change to 0 to infinity and u(t) drops out.


H(s) = Integral(0 to infinity)e^(-7t)*e^(-st)dt


H(s) = Integral(0 to infinity)e^(-7t-st)dt


H(s) = e^(-7t-st)/(-7-s) evaluated from 0 to inifinity


H(s) = e^(-7*infinity-s*infinity)/(-7-s) - e^(0)/(-7-s)


H(s) = e^(-7*infinity-s*infinity)/(-7-s) goes to 0


H(s) = 1/(7+s)


H(jw) = 1/(7+jw)



d)Find the output y(t) of the above LTI system when the input x(t) is e^(j7t)

y(t) = x(t) convolved with h(t)

x(t) = e^(j7t)

h(t) = e^(-7t)u(t)

Using the properties of convolution we will choose to convolve using x(t-tau) and h(tau) for simplicity.

y(t) = Integral(-infinity to infinity)e^(j7(t-tau))e^(-7tau)u(tau)dtau

Drop the u(t) and change the integration limits.

y(t) = Integral(0 to infinity)e^(j7(t-tau))e^(-7tau)dtau

Simplify the exponentials.

y(t) = Integral(0 to infinity)e^(-7tau + j7t - j7tau)dtau

y(t) = (e^(-7tau + j7tau - j7tau))/(-7-j7) evaluated from 0 to inifity

y(t) = e^(-infinity)/(-7-j7) + e^(j7t)/(7+7j)

y(t) = e^(j7t)/(7+7j)

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison