Line 10: Line 10:
  
 
(b) Show that the system described by  
 
(b) Show that the system described by  
     y[n] = x[n] + x[n+1] + x[n+2] is a LTI system.
+
     <math>y[n] = x[n] + x[n+1] + x[n+2]</math> is a LTI system.
  
 +
    <math>
 +
    \begin{align}
 
     ax_{1}[n]+bx_{2}[n] → ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]
 
     ax_{1}[n]+bx_{2}[n] → ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]
 
                         = a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])
 
                         = a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])
 
                         = ay_{1}[n]+by_{2}[n]  \therefore System is linear
 
                         = ay_{1}[n]+by_{2}[n]  \therefore System is linear
 +
    \end{align}
 +
    </math>
  
  

Revision as of 15:49, 30 June 2008

(a) Derive the condition for which the discrete time complex exponetial signal x[n] is periodic.

 $ x[n] = e^{jw_{o}n} $         
 $ x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N} $
 to be periodic 
 $ e^{jw_{o}N} = 1 = e^{j2\pi k} $
 $ \therefore w_{o}N = 2\pi k $
 $ \Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow $Rational number
 $ \therefore \frac{w_{o}}{2\pi} $ shold be a rational number

(b) Show that the system described by

   $ y[n] = x[n] + x[n+1] + x[n+2] $ is a LTI system.
   $      \begin{align}     ax_{1}[n]+bx_{2}[n] → ax_{1}[n]+bx_{2}[n]+ax_{1}[n+1]+bx_{2}[n+1]+ax_{1}[n+2]+bx_{2}[n+2]                         = a(x_{1}[n]+x_{1}[n+1]+x_{1}[n+2])+b(x_{2}[n]+x_{2}[n+1]+x_{2}[n+2])                         = ay_{1}[n]+by_{2}[n]  \therefore System is linear     \end{align}      $


   y_{1}[n-n_{0}] = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2]
   Let x_{2} = x_{1}[n-n_{0}]
     x_{2}[n] \rightarrow x_{2}[n]+x_{2}[n+1]+x_{2}[n+2]
   = x_{1}[n-n_{0}]+x_{1}[n-n_{0}+1]+x_{1}[n-n_{0}+2] = y_{1}[n-n_{0}]
   \therefore  System is time-variant

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett