Line 6: Line 6:
 
   <math>e^{jw_{o}N} = 1 = e^{j2\pi k}</math>
 
   <math>e^{jw_{o}N} = 1 = e^{j2\pi k}</math>
 
   <math>\therefore w_{o}N = 2\pi k</math>
 
   <math>\therefore w_{o}N = 2\pi k</math>
   <math>\Rightarrow frac{w_{o}}{2\pi} = frac{K}{N} \Rightarrow</math>Rational number
+
   <math>\Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow</math>Rational number
   <math>\therefore {w_{o}}{2\pi}</math> shold be a rational number
+
   <math>\therefore \frac{w_{o}}{2\pi}</math> shold be a rational number

Revision as of 15:17, 30 June 2008

(a) Derive the condition for which the discrete time complex exponetial signal x[n] is periodic.

 $ x[n] = e^{jw_{o}n} $         
 $ x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N} $
 to be periodic 
 $ e^{jw_{o}N} = 1 = e^{j2\pi k} $
 $ \therefore w_{o}N = 2\pi k $
 $ \Rightarrow \frac{w_{o}}{2\pi} = \frac{K}{N} \Rightarrow $Rational number
 $ \therefore \frac{w_{o}}{2\pi} $ shold be a rational number

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett