Line 3: Line 3:
 
   <math>x[n] = e^{jw_{o}n}</math>         
 
   <math>x[n] = e^{jw_{o}n}</math>         
 
   <math>x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N}</math>
 
   <math>x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N}</math>
   <math>\therefore e^{jw_{o}N = 1 = e^{j2\pi k}}</math>
+
   to be periodic <math>e^{jw_{o}N} = 1 = e^{j2\pi k}}</math>
 +
  <math>\therefore w_{o}N = 2\pi k</math>
 +
  <math>\rightarrow w_{o}/2\pi = K/N \rightarrow</math>Rational number
 +
  <math>\therefore w_{o} / 2\pi</math> shold be a rational number

Revision as of 15:12, 30 June 2008

(a) Derive the condition for which the discrete time complex exponetial signal x[n] is periodic.

 $ x[n] = e^{jw_{o}n} $         
 $ x[n] = x[n+N] = e^{jw_{o}(n+N)} = e^{jw_{o}n}e^{jw_{o}N} $
 to be periodic $ e^{jw_{o}N} = 1 = e^{j2\pi k}} $
 $ \therefore w_{o}N = 2\pi k $
 $ \rightarrow w_{o}/2\pi = K/N \rightarrow $Rational number
 $ \therefore w_{o} / 2\pi $ shold be a rational number

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal