Line 7: Line 7:
 
* <math>cosh(x) = \frac{e^x + e^{-x}}{2}</math>
 
* <math>cosh(x) = \frac{e^x + e^{-x}}{2}</math>
  
* <math>tan(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}</math>
+
* <math>tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}</math>
  
 
* <math>coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}}</math>
 
* <math>coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}}</math>

Revision as of 08:39, 12 October 2008

Just in case so you don't have to look them up in your book or whatever. And so I can learn how to use Latex!

Hyperbolic Functions

  • $ sinh(x) = \frac{e^x - e^{-x}}{2} $
  • $ cosh(x) = \frac{e^x + e^{-x}}{2} $
  • $ tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} $
  • $ coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}} $
  • $ sech(x) = \frac{1}{cosh(x)} = \frac{2}{{e^x + e^{-x}}} $
  • $ csch(x) = \frac{1}{sinh(x)} = \frac{2}{e^x - e^{-x}} $

Idryg 20:10, 11 October 2008 (UTC)

Basic Integration Formulas

$ \int\frac{du}{\sqrt{a^2-u^2}}=sin^{-1}\frac{u}{a} + C $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang