Line 7: | Line 7: | ||
* <math>cosh(x) = \frac{e^x + e^{-x}}{2}</math> | * <math>cosh(x) = \frac{e^x + e^{-x}}{2}</math> | ||
− | * <math> | + | * <math>tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}</math> |
* <math>coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}}</math> | * <math>coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}}</math> |
Revision as of 08:39, 12 October 2008
Just in case so you don't have to look them up in your book or whatever. And so I can learn how to use Latex!
Hyperbolic Functions
- $ sinh(x) = \frac{e^x - e^{-x}}{2} $
- $ cosh(x) = \frac{e^x + e^{-x}}{2} $
- $ tanh(x) = \frac{sinh(x)}{cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} $
- $ coth(x) = \frac{cosh(x)}{sinh(x)} = \frac{{e^x + e^{-x}}}{{e^x - e^{-x}}} $
- $ sech(x) = \frac{1}{cosh(x)} = \frac{2}{{e^x + e^{-x}}} $
- $ csch(x) = \frac{1}{sinh(x)} = \frac{2}{e^x - e^{-x}} $
Idryg 20:10, 11 October 2008 (UTC)
Basic Integration Formulas
$ \int\frac{du}{\sqrt{a^2-u^2}}=sin^{-1}\frac{u}{a} + C $