m
Line 11: Line 11:
 
b)
 
b)
  
<math>f(x)=f$_{e}$(x)+f$_{0}$(x)</math>
+
<math>f(x)=f_{e}(x)+f_{0}(x)</math>
  
<math>f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x)</math>
+
<math>f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x)</math>
  
<math>solve for f$_{e}$(x) and f$_{0}$(x)</math>
+
<math>solve for f_{e}(x) and f_{0}(x)</math>
  
<math>f$_{e}$(x)= (f(x)+f(-x))/2</math>
+
<math>f_{e}(x)= (f(x)+f(-x))/2</math>
  
<math>f$_{0}$(x)= (f(x)-f(-x))/2</math>
+
<math>f_{0}(x)= (f(x)-f(-x))/2</math>

Revision as of 07:42, 6 October 2008

a)

g(x)+h(x)=0

g(x) even h(x) odd

g is both even and odd

g(x)=g(-x)=-g(x)

b)

$ f(x)=f_{e}(x)+f_{0}(x) $

$ f(-x)=f_{e}(-x)+f_{0}(-x)=f_{e}(x)-f_{0}(x) $

$ solve for f_{e}(x) and f_{0}(x) $

$ f_{e}(x)= (f(x)+f(-x))/2 $

$ f_{0}(x)= (f(x)-f(-x))/2 $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett