(New page: a) g(x)+h(x)=0 g(x) even h(x) odd g is both even and odd g(x)=g(-x)=-g(x) b) f(x)=f$_{e}$(x)+f$_{0}$(x) f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x) solve for f$_{e}$(x) and f$_{0}$...)
 
Line 1: Line 1:
 
a)
 
a)
 +
 
g(x)+h(x)=0
 
g(x)+h(x)=0
 +
 
g(x) even h(x) odd
 
g(x) even h(x) odd
 +
 
g is both even and odd
 
g is both even and odd
 +
 
g(x)=g(-x)=-g(x)
 
g(x)=g(-x)=-g(x)
 +
 
b)
 
b)
 +
 
f(x)=f$_{e}$(x)+f$_{0}$(x)
 
f(x)=f$_{e}$(x)+f$_{0}$(x)
 +
 
f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x)
 
f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x)
 +
 
solve for f$_{e}$(x) and f$_{0}$(x)
 
solve for f$_{e}$(x) and f$_{0}$(x)
 +
 
f$_{e}$(x)= (f(x)+f(-x))/2
 
f$_{e}$(x)= (f(x)+f(-x))/2
 +
 
f$_{0}$(x)= (f(x)-f(-x))/2
 
f$_{0}$(x)= (f(x)-f(-x))/2

Revision as of 07:40, 6 October 2008

a)

g(x)+h(x)=0

g(x) even h(x) odd

g is both even and odd

g(x)=g(-x)=-g(x)

b)

f(x)=f$_{e}$(x)+f$_{0}$(x)

f(-x)=f$_{e}$(-x)+f$_{0}$(-x)=f$_{e}$(x)-f$_{0}$(x)

solve for f$_{e}$(x) and f$_{0}$(x)

f$_{e}$(x)= (f(x)+f(-x))/2

f$_{0}$(x)= (f(x)-f(-x))/2

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison