Line 8: Line 8:
 
I tried that too.  Then I thought, hey, why not try to factor out a <math>\sqrt{x}</math> from the
 
I tried that too.  Then I thought, hey, why not try to factor out a <math>\sqrt{x}</math> from the
 
denominator and see what happens.  --[[User:Bell|Bell]] 15:20, 29 September 2008 (UTC)
 
denominator and see what happens.  --[[User:Bell|Bell]] 15:20, 29 September 2008 (UTC)
 +
 +
That did it.  'u' equals '2+sqrt(x)' and 'du' equals '1/sqrt(x)'.  Both are right there in the factored equation.  I tried some factoring earlier, but instead of factoring a <math> \sqrt(x) </math> from the denominator, I factored an x.  That lead me nowhere.  Thanks for the help Dr. Bell. [[User:Gbrizend|Gbrizend]]

Revision as of 10:42, 29 September 2008

Evaluate the Integral:

$ \int \frac{dx}{2\sqrt(x)+2x} $.

I tried setting 'u' equal to $ 2\sqrt(x)+2x $ and 'du' equal to $ (\frac{1}{\sqrt(x)}+2 )dx $. I fail to see where to go from this point. Does anyone know where to go from here? Gbrizend

I tried that too. Then I thought, hey, why not try to factor out a $ \sqrt{x} $ from the denominator and see what happens. --Bell 15:20, 29 September 2008 (UTC)

That did it. 'u' equals '2+sqrt(x)' and 'du' equals '1/sqrt(x)'. Both are right there in the factored equation. I tried some factoring earlier, but instead of factoring a $ \sqrt(x) $ from the denominator, I factored an x. That lead me nowhere. Thanks for the help Dr. Bell. Gbrizend

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang