m
 
Line 17: Line 17:
 
<math>F_{fluid} = \delta \int_{-2}^d (width)(depth) dy = 62.4 \int_{-2}^d -2y\sqrt{4-y^2}dy=41.6(4-d^2)^\frac{3}{2}</math>
 
<math>F_{fluid} = \delta \int_{-2}^d (width)(depth) dy = 62.4 \int_{-2}^d -2y\sqrt{4-y^2}dy=41.6(4-d^2)^\frac{3}{2}</math>
  
<math>z(h) = \frac{41.6(4-d^2)^\frac{3}{2}}{100}=.416(4-d^2)^\frac{3}{2}</math>
+
<math>z(d) = \frac{41.6(4-d^2)^\frac{3}{2}}{100}=.416(4-d^2)^\frac{3}{2}</math>
  
 
Now, solving for <math>z</math> when <math>d=0</math>
 
Now, solving for <math>z</math> when <math>d=0</math>

Latest revision as of 07:56, 28 September 2008

"Water pours into the tank here at the rate of 4 cubic ft/min. The tank's cross-sections are 4-ft diameter semicircles. One end of the tank is movable, but moving it to increase the volume compresses a spring. The spring constant is $ k = 100 $ lb/ft. If the end of the tank moves 5 ft against the spring, the water will drain out of a safety hole in the bottom at the rate of 5 cubic ft/min. Will the movable end reach the end before the tank overflows?"

We know that, according to Hooke's Law,

$ F_{spring} = kz $

where $ z = $ distance compression of the spring. We also know that

$ F_{fluid} = F_{spring} $

Therefore

$ z = \frac{F_{fluid}}{k} $

We can calculate the force of the water, and therefore z, as a function of the distance d between the top of the container and the surface of the water:

$ F_{fluid} = \delta \int_{-2}^d (width)(depth) dy = 62.4 \int_{-2}^d -2y\sqrt{4-y^2}dy=41.6(4-d^2)^\frac{3}{2} $

$ z(d) = \frac{41.6(4-d^2)^\frac{3}{2}}{100}=.416(4-d^2)^\frac{3}{2} $

Now, solving for $ z $ when $ d=0 $

$ z(0) = 3.328 $

Therefore, the tank will overflow, because when the tank is full (d = 0), the spring will have only compressed 3.328 ft.

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman