(Lectures)
Line 114: Line 114:
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_1_-_Introduction 1] [http://balthier.ecn.purdue.edu/index.php/Lecture_2_-_Decision_Hypersurfaces 2] [http://balthier.ecn.purdue.edu/index.php/Lecture_3_-_Bayes_classification 3]
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_1_-_Introduction 1] [http://balthier.ecn.purdue.edu/index.php/Lecture_2_-_Decision_Hypersurfaces 2] [http://balthier.ecn.purdue.edu/index.php/Lecture_3_-_Bayes_classification 3]
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_4_-_Bayes_Classification 4] [http://balthier.ecn.purdue.edu/index.php/Lecture_5_-_Discriminant_Functions 5] [http://balthier.ecn.purdue.edu/index.php/Lecture_6_-_Discriminant_Functions 6] [http://balthier.ecn.purdue.edu/index.php/Lecture_7_-_MLE_and_BPE 7] [http://balthier.ecn.purdue.edu/index.php/Lecture_8_-_MLE%2C_BPE_and_Linear_Discriminant_Functions 8] [http://balthier.ecn.purdue.edu/index.php/Lecture_9_-_Linear_Discriminant_Functions 9] [http://balthier.ecn.purdue.edu/index.php/Lecture_10_-_Batch_Perceptron_and_Fisher_Linear_Discriminant 10] [http://balthier.ecn.purdue.edu/index.php/Lecture_11_-_Fischer%27s_Linear_Discriminant_again 11] [http://balthier.ecn.purdue.edu/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem 12] [http://balthier.ecn.purdue.edu/index.php/Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction 13] [http://balthier.ecn.purdue.edu/index.php/Lecture_14_-_ANNs%2C_Non-parametric_Density_Estimation_%28Parzen_Window%29 14] [http://balthier.ecn.purdue.edu/index.php/Lecture_15_-_Parzen_Window_Method 15] [http://balthier.ecn.purdue.edu/index.php/Lecture_16_-_Parzen_Window_Method_and_K-nearest_Neighbor_Density_Estimate 16] [http://balthier.ecn.purdue.edu/index.php/Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics 17] [http://balthier.ecn.purdue.edu/index.php/Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics%28Continued%29 18]
 
[http://balthier.ecn.purdue.edu/index.php/Lecture_4_-_Bayes_Classification 4] [http://balthier.ecn.purdue.edu/index.php/Lecture_5_-_Discriminant_Functions 5] [http://balthier.ecn.purdue.edu/index.php/Lecture_6_-_Discriminant_Functions 6] [http://balthier.ecn.purdue.edu/index.php/Lecture_7_-_MLE_and_BPE 7] [http://balthier.ecn.purdue.edu/index.php/Lecture_8_-_MLE%2C_BPE_and_Linear_Discriminant_Functions 8] [http://balthier.ecn.purdue.edu/index.php/Lecture_9_-_Linear_Discriminant_Functions 9] [http://balthier.ecn.purdue.edu/index.php/Lecture_10_-_Batch_Perceptron_and_Fisher_Linear_Discriminant 10] [http://balthier.ecn.purdue.edu/index.php/Lecture_11_-_Fischer%27s_Linear_Discriminant_again 11] [http://balthier.ecn.purdue.edu/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem 12] [http://balthier.ecn.purdue.edu/index.php/Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction 13] [http://balthier.ecn.purdue.edu/index.php/Lecture_14_-_ANNs%2C_Non-parametric_Density_Estimation_%28Parzen_Window%29 14] [http://balthier.ecn.purdue.edu/index.php/Lecture_15_-_Parzen_Window_Method 15] [http://balthier.ecn.purdue.edu/index.php/Lecture_16_-_Parzen_Window_Method_and_K-nearest_Neighbor_Density_Estimate 16] [http://balthier.ecn.purdue.edu/index.php/Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics 17] [http://balthier.ecn.purdue.edu/index.php/Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics%28Continued%29 18]
 +
[http://balthier.ecn.purdue.edu/index.php/Lecture_19_-_Nearest_Neighbor_Error_Rates 19]
 +
[http://balthier.ecn.purdue.edu/index.php/Lecture_20_-_Density_Estimation_using_Series_Expansion_and_Decision_Trees 20]

Revision as of 14:13, 28 March 2008

ECE662 Main Page

Class Lecture Notes

LECTURE THEME : - Discriminant Functions


Discriminant Functions: one way of representing classifiers

Given the classes $ \omega_1, \cdots, \omega_k $

The discriminant functions $ g_1(x),\ldots, g_K(x) $ such that $ g_i(x) $ n-dim S space $ \rightarrow \Re $

which are used to make decisions as follows:

decide $ \omega_i $ if $ g_i(x) \ge g_j(x), \forall j $

Note that many different choices of $ g_i(x) $ will yield the same decision rule, because we are interested in the order of values of $ g_i(x) $ for each x, and not their exact values.

For example: $ g_i(x) \rightarrow 2(g_i(x)) $ or $ g_i(x) \rightarrow ln(g_i(x)) $

In other words, we can take $ g_i(x) \rightarrow f(g_i(x)) $ for any monotonically increasing function f.


Relation to Bayes Rule

e.g. We can take $ g_i(\mathbf(x)) = P(\omega_i|\mathbf(x)) $

then $ g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i $

$ \Longleftrightarrow P(w_i|\mathbf(X)) > P(w_j|\mathbf(X)), \forall j \neq i $

OR we can take

$ g_i(\mathbf(x)) = p(\mathbf(x)|\omega_i)P(\omega_i) $

then $ g_i(\mathbf(x)) > g_j(\mathbf(x)), \forall j \neq i $

$ \Longleftrightarrow g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i) $

OR we can take

$ g_i(\mathbf(x)) = ln(p(\mathbf(x)|\omega_i)P(\omega_i)) = ln(p(\mathbf(x)|\omega_i))+ln(P(\omega_i) $

We can take any $ g_i $ as long as they have the same ordering in value as specified by Bayes rule.

Some useful links:

- Bayes Rule in notes: https://engineering.purdue.edu/people/mireille.boutin.1/ECE301kiwi/Lecture4

- Bayesian Inference: http://en.wikipedia.org/wiki/Bayesian_inference


Relational Decision Boundary

Ex : take two classes $ \omega_1 $ and $ \omega_2 $

$ g(\vec x)=g_1(\vec x)-g_2(\vec x) $

decide $ \omega_1 $ when $ g(\vec x)>0 $

and $ \omega_2 $ when $ g(\vec x)<0 $

when $ g(\vec x) = 0 $, you are at the decision boundary ( = hyperplane)

$ \lbrace \vec x | \vec x \;\;s.t \;\;g(\vec x)=0\rbrace $ is a hypersurface in your feature space i.e a structure of co-dimension one less dimension than space in which $ \vec x $ lies

Figure 1


Discriminant function for the Normal Density

Suppose we assume that the distribution of the feature vectors is such that the density function p(X|w) is normal for all i.

Eg: Length of hair among men is a normal random variable. Same for hairlength in women. Now we have:

Eq11b OldKiwi.PNG

Eq11 OldKiwi.PNG

Eq12 OldKiwi.PNG is the Mahalanobis Distance Squared from X from mui

Figure 2

For simplicity, add n/2ln(2pi) to all gi's. Then we get: Eq12b OldKiwi.PNG

Prior Term: Eq13 OldKiwi.PNG

If classes are equally likely, then we can get rid of the first term. If the Distribution Matrix is the same, then the second term goes off. Special case 1: "Spherical clusters" in n-dimensional space. Equidistant points lie on a circle around the average values. ECE662 notes 5 OldKiwi.png Figure 3

Final Note on Lecture 5:

We could modify the coordinates of a class feature vector (as shown on the figure below) to take advantage of Special Case 1. But you should be aware that, in general, this can not be done for all classes simultaneously.

Change coor1 OldKiwi.jpg Figure 4

Final note OldKiwi.gif Figure 5

Lectures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn