(New page: A.3) Suppose that <math>y>0, \ x \in (\frac{1}{2}, \frac{3}{2})</math> and <math>0<h<\frac{1}{4}</math>, say. Then<math> -\frac{e^{-(x+h)y}-e^{-xy}}{h} \frac{1}{y^3+1} =- \frac{d}{dx} ...)
 
 
Line 17: Line 17:
 
= - \int_0^\infty  lim_{h \rightarrow 0} -\frac{e^{-(x+h)y}-e^{-xy}}{h}\frac{1}{y^3+1} dy</math>  (see * Below)
 
= - \int_0^\infty  lim_{h \rightarrow 0} -\frac{e^{-(x+h)y}-e^{-xy}}{h}\frac{1}{y^3+1} dy</math>  (see * Below)
 
<math>
 
<math>
= \int_0^\infty  lim_{h \rightarrow 0} \frac{e^{-(x+h)y}-e^{-xy}}{y^3+1} dy</math>
+
= \int_0^\infty  lim_{h \rightarrow 0} \frac{e^{-(x+h)y}-e^{-xy}}{h}\frac{1}{y^3+1} dy</math>
 
<math>
 
<math>
 
= \int_0^\infty  \frac{d}{dx}[e^{-xy}]\frac{1}{y^3+1} dy</math>
 
= \int_0^\infty  \frac{d}{dx}[e^{-xy}]\frac{1}{y^3+1} dy</math>

Latest revision as of 12:32, 24 July 2008

A.3)

Suppose that $ y>0, \ x \in (\frac{1}{2}, \frac{3}{2}) $ and $ 0<h<\frac{1}{4} $, say.

Then$ -\frac{e^{-(x+h)y}-e^{-xy}}{h} \frac{1}{y^3+1} =- \frac{d}{dx} [e^{-xy}]_a \frac{1}{y^3+1} = \frac{ye^{-ay}}{y^3+1} $ by MVT for some $ 0<a<2. $

$ =\frac{ye^{-ay}}{y^3+1} \leq \frac{y}{y^3+1} $, which is integrable on $ (0, \infty). $

So,

$ F'(x) = -lim_{h \rightarrow 0} - \frac{ \int_0^\infty \frac{e^{-(x+h)y}}{y^3+1} dy - \int_0^\infty \frac{e^{-(x)y}}{y^3+1} dy}{h} $

$ = - lim_{h \rightarrow 0} \int_0^\infty - \frac{e^{-(x+h)y}-e^{-xy}}{h}\frac{1}{y^3+1} dy $ $ = - \int_0^\infty lim_{h \rightarrow 0} -\frac{e^{-(x+h)y}-e^{-xy}}{h}\frac{1}{y^3+1} dy $ (see * Below) $ = \int_0^\infty lim_{h \rightarrow 0} \frac{e^{-(x+h)y}-e^{-xy}}{h}\frac{1}{y^3+1} dy $ $ = \int_0^\infty \frac{d}{dx}[e^{-xy}]\frac{1}{y^3+1} dy $ $ = \int_0^\infty - \frac{ye^{-xy}}{y^3+1} dy $

So $ F'(1)= - \int_0^\infty \frac{ye^{-y}}{y^3+1} dy, $ and since the integrand is positive and integrable (since $ \frac{y}{y^3+1} $ is integrable)

$ F'(1) $ exists and is negative.


(*)

We can put the limit inside because the integrand is nonnegative and is dominated by $ \frac{y}{y^3+1} $ which is integrable on $ (0,\infty ) $ as shown above.


--Wardbc 13:30, 24 July 2008 (EDT)

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman