Line 3: Line 3:
 
<math>\lambda(B)=\frac{\mu(B)}{\mu(A)}</math>
 
<math>\lambda(B)=\frac{\mu(B)}{\mu(A)}</math>
  
This is clearly a measure on <math>A</math> with <math>\lambda(A)=1</math>
+
This is clearly a measure on <math>A</math> with <math>\lambda(A)=1 \frac{}{}</math>
  
 
Moreover, <math>\int_{A}fd\mu = \mu(A)\int_A f d\lambda \frac{}{}</math>
 
Moreover, <math>\int_{A}fd\mu = \mu(A)\int_A f d\lambda \frac{}{}</math>

Revision as of 09:47, 22 July 2008

Define a function from the set of all measurable subset $ B $ of $ A $ as below

$ \lambda(B)=\frac{\mu(B)}{\mu(A)} $

This is clearly a measure on $ A $ with $ \lambda(A)=1 \frac{}{} $

Moreover, $ \int_{A}fd\mu = \mu(A)\int_A f d\lambda \frac{}{} $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics