Line 7: Line 7:
 
<math>\int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p}</math> by Holder.
 
<math>\int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p}</math> by Holder.
  
Let <math>g=\f}^{p{'}}</math>
+
Let <math>g=|f|^{p{'}}</math>
  
 
<math>\int_{X}|f|^{p^{'}} = </math>
 
<math>\int_{X}|f|^{p^{'}} = </math>

Revision as of 15:19, 11 July 2008

The case $ \mu(X)=\infty $ the inequality is true.

Suppose $ \mu(X) $ is finite, we have

Given $ p^{'}=\frac{p+r}{2} $,

$ \int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p} $ by Holder.

Let $ g=|f|^{p{'}} $

$ \int_{X}|f|^{p^{'}} = $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett