Line 1: Line 1:
a/<math>\mu(\{|f|>0\})>0</math>, so we have
+
 
 +
'''a)'''
 +
Notice that <math>\mu(\{|f|>0\})>0</math>, so we have
  
 
<math>(\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n}</math>
 
<math>(\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n}</math>
Line 9: Line 11:
 
Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then
 
Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then
  
<math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n}</math>
+
<math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} = M</math>
 +
 
 +
So, <math>(\int_{X}|f|^{n})^{1/n} \geq (\mu(X)||f||_{\infty})^{1/n}</math>
 +
 
 +
and we have the identity.
 +
 
 +
'''b)'''

Revision as of 13:43, 11 July 2008

a) Notice that $ \mu(\{|f|>0\})>0 $, so we have

$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $

Taking the limit of both side as $ n $ go to infinity, we get

$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $

Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then

$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} = M $

So, $ (\int_{X}|f|^{n})^{1/n} \geq (\mu(X)||f||_{\infty})^{1/n} $

and we have the identity.

b)

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett