Line 9: | Line 9: | ||
Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then | Let <math>M<||f||_{\infty} </math>, and <math>E=\{|f|>M\}</math>, then | ||
− | <math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n}</math> | + | <math>\lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n}</math> |
Revision as of 13:41, 11 July 2008
a/$ \mu(\{|f|>0\})>0 $, so we have
$ (\int_{X}|f|^{n})^{1/n} \leq (\mu(X)||f||_{\infty})^{1/n} $
Taking the limit of both side as $ n $ go to infinity, we get
$ \lim_{n\to \infty}||f||_{n} \leq ||f||_{\infty} $
Let $ M<||f||_{\infty} $, and $ E=\{|f|>M\} $, then
$ \lim_{n\to \infty}||f||_{n} \geq \lim_{n\to \infty}(\int_{E}|f|^{n})^{1/n} \geq (\mu(E)M^{n})^{1/n} $