Line 2: Line 2:
  
 
Problem 8
 
Problem 8
Let <math>X</math> be a finite measure space. If <math>f</math>  is measurable, let
+
Let <math> X </math> be a finite measure space. If <math> f </math>  is measurable, let
  
 
<math>E_n = \{x \in X : n-1 \leq |f(x)| < n \}</math>. Then
 
<math>E_n = \{x \in X : n-1 \leq |f(x)| < n \}</math>. Then
Line 8: Line 8:
 
<math>f \in L^1</math> if and only if <math>\sum_{n=1}^{\infty}nm(E_n) < \infty.</math>
 
<math>f \in L^1</math> if and only if <math>\sum_{n=1}^{\infty}nm(E_n) < \infty.</math>
  
First, if <math> m(X)=/infty </math>, it's done. Hence let's suppose that <math> m(X)<\infty </math>
+
First, if <math> m(X)= /infty </math>, it's done. Hence let's suppose that <math> m(X)<\infty </math>

Revision as of 22:56, 10 July 2008

Suppose we know the conclusion of problem 8,

Problem 8 Let $ X $ be a finite measure space. If $ f $ is measurable, let

$ E_n = \{x \in X : n-1 \leq |f(x)| < n \} $. Then

$ f \in L^1 $ if and only if $ \sum_{n=1}^{\infty}nm(E_n) < \infty. $

First, if $ m(X)= /infty $, it's done. Hence let's suppose that $ m(X)<\infty $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva