Line 4: Line 4:
  
 
Let <math>h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t)</math>
 
Let <math>h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t)</math>
 +
 +
Lebesgue Monotone Convergence Theorem gives us <math>g(x)=\int_{0}^{x}h(t)dt</math>

Revision as of 09:31, 10 July 2008

Since all the $ f_{n} $ are AC, there exists $ f_{n}^{'} $ such that $ f_{n}(x)=f_{n}(x)-f_{n}(0)=\int_{0}^{x}f_{n}^{'}(t)dt $ and $ f_{n}^{'} $ are nonnegative almost everywhere.

Let $ g_{n}(x)= \sum_{k=1}^{n}f_{k}(x)=\sum_{1}^{n}\int_{0}^{x}f_{k}^{'}(t)dt=\int_{0}^{x}(\sum_{k=0}^{n}f_{k}^{'}(t))dt $

Let $ h(t)=\sum_{k=1}^{what the hell is this}f_{k}^{'}(t) $

Lebesgue Monotone Convergence Theorem gives us $ g(x)=\int_{0}^{x}h(t)dt $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood