Line 10: Line 10:
  
 
<math>
 
<math>
\int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M & |f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f|
+
\int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f|
  
 
</math>
 
</math>

Revision as of 09:08, 2 July 2008

$ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\leq\sup\limits_n\int_{(0,1)}|f_n-f|+\sup\limits_n\int_{\{|f_n|>M\}}|f| $

$ Since \int_{(0,1)}|f_n-f|\to0(n\to\infty), \sup\limits_n\int_{(0,1)}|f_n-f|=0 $

Therefore, to show $ \sup\limits_n\int_{\{|f_n|>M\}}|f_n|\to0(M\to\infty), $it suffices to show that $ \sup\limits_n\int_{\{|f_n|>M\}}|f|\to0(M\to\infty) $

Actually,

$ \int_{\{f_n>M\}}|f|\leq\int_{\{|f_n|>M,|f|<M-\epsilon\}}|f|+\int_{\{|f|>M-\epsilon\}}|f| $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal