Line 1: Line 1:
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|\\
+
<math>\int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|//
 
+
 
Since \int_{(0,1)}|f_n-f|\to0,
 
Since \int_{(0,1)}|f_n-f|\to0,
 
</math>
 
</math>

Revision as of 08:45, 2 July 2008

$ \int_{\{|f_n|>M\}}|f_n|\leq\int_{(0,1)}|f_n-f|+\int_{\{|f_n|>M\}}|f|// Since \int_{(0,1)}|f_n-f|\to0, $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood