Line 11: | Line 11: | ||
<math> \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega </math> | <math> \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega </math> | ||
− | <math> | + | <math> \Rightarrow ~~~~~~~~= \frac {1}{2\pi} \int_{0}^{2} 2 e^{jt\omega}\,d\omega + \frac {1}{2\pi} \int_{-2}^{0} (-2) e^{jt\omega}\,d\omega </math> |
Revision as of 18:59, 1 July 2008
Solution to Prob 4.4b
Its given that X(jw) =
$ ~2, ~~0 \le \omega \le 2 $
$ -2, ~~-2 \le \omega < 0 $
$ ~0, ~~|\omega| > 2 $
$ \therefore x_2(t) = \frac {1}{2\pi} \int_{-\infty}^{\infty} X_2(j\omega) e^{jt\omega}\,d\omega $
$ \Rightarrow ~~~~~~~~= \frac {1}{2\pi} \int_{0}^{2} 2 e^{jt\omega}\,d\omega + \frac {1}{2\pi} \int_{-2}^{0} (-2) e^{jt\omega}\,d\omega $