(→Maximum Likelihood Estimation (ML)) |
(→Maximum A-Posteriori Estimation (MAP)) |
||
Line 5: | Line 5: | ||
==Maximum A-Posteriori Estimation (MAP)== | ==Maximum A-Posteriori Estimation (MAP)== | ||
− | <math>\hat \theta_{MAP}(x) = \text{arg max} | + | <math>\hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} P_{X|\theta}(x|\theta)P_ |
{\theta}(\theta)</math> | {\theta}(\theta)</math> | ||
− | <math>\hat \theta_{MAP}(x) = \text{arg max} | + | <math>\hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} f_{X|\theta}(x|\theta)P_ |
{\theta}(\theta)</math> | {\theta}(\theta)</math> | ||
Revision as of 14:54, 13 December 2008
Contents
- 1 Maximum Likelihood Estimation (ML)
- 2 Maximum A-Posteriori Estimation (MAP)
- 3 Minimum Mean-Square Estimation (MMSE)
- 4 Law Of Iterated Expectation
- 5 Mean square error :
- 6 Linear Minimum Mean-Square Estimation (LMMSE)
- 7 Hypothesis Testing: ML Rule
- 8 Hypothesis Testing: MAP Rule
- 9 Likelihood Ratio TEST
Maximum Likelihood Estimation (ML)
- $ \hat a_{ML} = \overset{max}{a} f_{X}(x_i;a) $ continuous
- $ \hat a_{ML} = \overset{max}{a} Pr(x_i;a) $ discrete
Maximum A-Posteriori Estimation (MAP)
$ \hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} P_{X|\theta}(x|\theta)P_ {\theta}(\theta) $
$ \hat \theta_{MAP}(x) = \text{arg }\overset{max}{\theta} f_{X|\theta}(x|\theta)P_ {\theta}(\theta) $
Minimum Mean-Square Estimation (MMSE)
$ \hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm Y|X}(y|x)\, dy={E}(Y|X=x) $
Law Of Iterated Expectation
Unconditional Expectaion--$ \ E[X] = E[E[x|\theta]] $
--Umang 16:10, 13 December 2008 (UTC)umang
Mean square error :
$ MSE = E[(\theta - \hat \theta(x))^2] $
Linear Minimum Mean-Square Estimation (LMMSE)
$ \hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $
Law of Iterated Expectation: E[E[X|Y]]=E[X]
Hypothesis Testing: ML Rule
Given a value of X, we will say H1 is true if X is in region R, else will will say H0 is true.
Type I error
Say H1 when truth is H0. Probability of this is: $ Pr(\mbox{Say } H_1|H_0) = Pr(x \in R|\theta_0) $
Type II error
Say H0 when truth is H1. Probability of this is: $ Pr(\mbox{Say }H_0|H_1) = Pr(x \in R^C|\theta_1) $
Hypothesis Testing: MAP Rule
$ \mbox{Overall P(err)} = P_{\theta}(\theta_{0})Pr\Big[\mbox{Say }H_{1}|H_{0}\Big] +P_{\theta}(\theta_{1})Pr\Big[\mbox{Say }H_{0}|H_{1}\Big] $
Likelihood Ratio TEST
How to find a good rule? --Khosla 16:44, 13 December 2008 (UTC)
$ \ L(x) = \frac{P_{\rm X|\theta} (x|\theta_1)}{P_{\rm X|\theta} (x|\theta_1)} $
Choose threshold (T),
$ \mbox{Say } \begin{cases} H_{1}; \mbox{ if } L(x) > T\\ H_{0}; \mbox{ if } L(x) < T \end{cases} $
so ML Rule is an LRT with T = 1
as T increases Type I Error Increases
as T increases Type II Error Decreases
& Vice Versa
so ML Rule is an Likelihood Ratio Test with T = 1