(No difference)

Revision as of 10:00, 21 November 2008

We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.

$ y(t) = h(t) * x(t) = \int_{-\infty}^\infty h(\tau)x(t-\tau)d\tau $


Plugging in the given x(t) and h(t) values results in:

$ \begin{align} y(t) & = \int_{-\infty}^\infty e^{-\tau}u(\tau)u(t-\tau-1)d\tau \\ & = \int_0^\infty e^{-\tau}u(t-\tau-1)d\tau \\ & = \int_0^{t-1} e^{-\tau}d\tau \\ & = 1-e^{-(t-1)}\, \mbox{ for } t > 1 \end{align} $


Since x(t) = 0 when t < 1:

$ y(t) = 0\, \mbox{ for } t < 1 $


$ \therefore y(t) = \begin{cases} 1-e^{-(t-1)}, & \mbox{if }t\mbox{ is} > 1 \\ 0, & \mbox{if }t\mbox{ is} < 1 \end{cases} $

Alternative Solutions

Problem 5 - Alternate Solution

Problem 5 - Graphical Solution

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood