(New page: =Reading Guide= <span style="color:orange"> UNDER CONSTRUCTION!!! </span> Here is a reading guide to help you get ready for the final exam. Note: PM refers to the official course book, D...) |
(No difference)
|
Revision as of 04:56, 30 April 2009
Contents
Reading Guide
UNDER CONSTRUCTION!!! Here is a reading guide to help you get ready for the final exam.
Note: PM refers to the official course book, Digital Signal Processing, 3rd edition, J.G. Proakis and D.G. Manolakis. Prentice Hall, 1996.
Signals
- PM pp. 7-21
- Prof. Allebach's lecture notes on Signal Types
- Prof. Allebach's lecture notes on Signal Characteristics
- Prof. Allebach's lecture notes on Signal Transformations
- Prof. Allebach's lecture notes on Special Signals
Systems
- PM pp. 43-91
- Prof. Allebach's lecture notes on Systems Overview, p. 63
- Prof. Allebach's lecture notes on System Properties
- Prof. Allebach's lecture notes on Convolution, pp. 87-92, 97-110
Frequency analysis
- Frequency response:
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.2_systems/1.2.3_frequency_response.pdf">1.2.3</A>
Review of complex numbers:
<A HREF="FALL01/complex.pdf">supplementary notes</A>,
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.1_signals/1.1.5_complex_variables.pdf">1.1.5</A>
Linear algebra and Fourier series: PM pp. 232-240, 247-253, 399-409,
<A HREF="http://dynamo.ecn.purdue.edu/~ipollak/ee438/FALL01/Fourier_notes1.pdf">supplementary notes</A>
DTFT: PM pp. 253-259, 264-314, 331-345,
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.3_fourier_analysis/1.3.3_dtft.pdf">1.3.3</A>
Sampling
- PM pp. 23-33, 738-748, 782-790
- <A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.4_sampling/1.4.1_sampling_analysis.pdf">1.4.1</A>
- <A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.4_sampling/1.4.2_reln_ctft_dftf.pdf">1.4.2</A>
- <A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.4_sampling/1.4.3_sampling_rate_conv.pdf">1.4.3</A>
Z-transform
- PM pp. 151-197
- <A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.5_z_transform/1.5.1_zt_derivation.pdf">1.5.1 Derivation.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.5_z_transform/1.5.3_zt_prop_and_pairs.pdf">1.5.3 Properties and Pairs.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.5_z_transform/1.5.4_zt_and_ccf_diff_eq.pdf">1.5.4 Z-transform and Difference Equations,</A> pp. 33-45
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.5_z_transform/1.5.5_inverse_zt.pdf">1.5.5 Inverse Z-transform.</A>
DFT and FFT
PM pp. 393-425, 448-475
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.6_dft/1.6.1_dft_derivation.pdf">1.6.1 Derivation,</A> p. 24
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.6_dft/1.6.2_dft_prop_and_pairs.pdf">1.6.2 Properties and Pairs.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.6_dft/1.6.4_fft_algorithm.pdf">1.6.4 FFT.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_1/1.6_dft/1.6.5_periodic_convol.pdf">1.6.5 Circular Convolution.</A>
Random sequences
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_3/3.1_random_signals/3.1.1_one_rv.pdf">3.1.1 One Random Variable.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_3/3.1_random_signals/3.1.2_two_rvs.pdf">3.1.2 Two Random Variables.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_3/3.1_random_signals/3.1.3_random_sequences.pdf">3.1.3 Random Sequences.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_3/3.1_random_signals/3.1.4_estimating_distrib.pdf">3.1.4 Estimation of Distributions.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_3/3.1_random_signals/3.1.5_filtering_random_seq.pdf">3.1.5 Filtering.</A>
<A HREF="http://dynamo.ecn.purdue.edu/~bouman/ee438/lecture/module_3/3.1_random_signals/3.1.6_estimating_correl.pdf">3.1.6 Estimation of Correlation Functions.</A>